3.4 Preparazione acciaio

FASI DI LAVORAZIONE SPECIFICHE

Preparazione elettrodi

Caricamento forno

Introduzione di additivi

Fusione

Affinazione

Controllo del processo

Scorifica

Bussaggio

Spillaggio

Ripristino forno a termine ciclo

Processi

Fusione della carica metallica

Ossidazione selettiva dei componenti dell'acciaio

Affinazione della sua composizione

<u>Trasformazioni chimico – fisiche e condizioni operative (temperatura e pressione)</u>

Elemento ossidante: ossigeno Elemento riducente: carbone

Vettori energetici: energia elettrica + combustibili gassosi (gas naturale) e solidi (carbone)

Reazioni esotermiche di ossidazione:

Processi di combustione e di ossidazione selettiva degli elementi con elevata affinità con l'ossigeno (in base alla temperatura) e formazione di scoria costituita da una soluzione di ossidi:

- $2C + O_2 \rightarrow 2CO$
- $C + O_2 \rightarrow CO_2$
- SiO + O₂ \rightarrow SiO₂
- $2Mn + O_2 \rightarrow 2MnO$
- $4P + 5 O_2 \rightarrow 2P_2O_5$

Riduzione dell'ossido di ferro tramite ossidazione parziale del carbonio (disossidazione):

- Fe₂O₃ + 3CO \rightarrow 2Fe + 3CO₂

Processi di affinazione, cioè di controllo del tenore degli elementi in lega tramite equilibrio lega – atmosfera e bagno – scoria (rapporti di ripartizione fra metallo e scoria):

- $2Mn(bagno) + O_2 \rightarrow 2MnO(scoria)$
- Si(bagno) + $O_2 \rightarrow SiO_2(scoria)$
- $4P(bagno) + 5O_2 \rightarrow 2P_2O_5(scoria)$
- $4Cr(bagno) + 3O_2 \rightarrow 2Cr_2O_3(scoria)$

Temperatura: ambiente – 1700 °C

Caratteristiche strutturali dei materiali in lavorazione

- Soluzione di carbonio e di altri elementi nel ferro metallico
- Formazione di fase liquida non metallica (scoria) sovrastante il bagno

Generalmente sono utilizzati forni ad arco diretto, a suola non conduttrice, trifasi con tre elettrodi. Nel panorama italiano sono installati anche alcuni forni a suola conduttrice con unico elettrodo.

Si tratta di contenitori realizzati in carpenteria metallica rivestita internamente di refrattario e di carpenteria a circolazione d'acqua (pannelli), che consentono di fondere tramite un processo discontinuo governato da carica, fusione e svuotamento dell'involucro. La volta del forno è dotata di tre fori per il passaggio degli elettrodi, di un quarto foro per l'estrazione dei fumi, di un ulteriore quinto foro per l'introduzione degli additivi tramite il sistema di caricamento automatizzato. Gli elettrodi si posizionano automaticamente in altezza, governati dall'andamento del processo metallurgico.

Figura 3.4.1. Forno elettrico ad arco, particolare delle porta e della carpenteria del tino a circolazione di acqua Figura 3.4.2. Rappresentazione schematica dei flussi riferiti a un forno ad arco

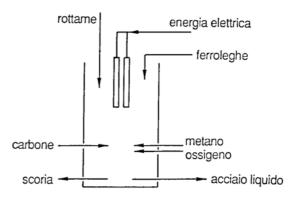
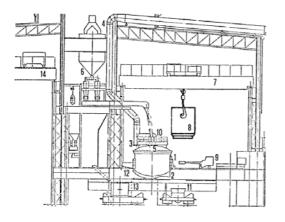
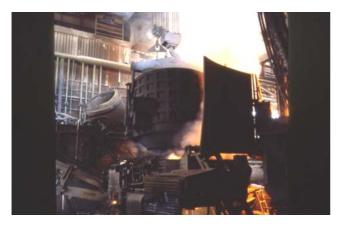



Figura 3.4.3. Sezione dell'area di lavoro di un tipico forno elettrico. Figura 3.4.4. Vista della campata forno

- culla di basculamento forno
 quarto foro per aspirazione fumi
- 4. canalizzazione di aspirazione
- 5. quinto foro per caricamento additivi
- 6. sistema meccanizzato per additivi
- 8. cesta di carica rottame
- 9. macchina operatrice in platea 10. elettrodi
- paiola della scoria (su carro)
 canale di colata
- 13. siviera dell'acciaio (su carro)

La carica del rottame si effettua dall'alto, dopo aver sollevato gli elettrodi e ruotato la volta, per mezzo di apposite ceste con fondo apribile, sostenute da carroponte: normalmente si ricorre a 2-3 ceste per ogni ciclo.


Figura 3.4.5. Rotazione della volta. Figura 3.4.6. Sollevamento della cesta

Richiuso il forno, la fusione del rottame viene realizzata con energia fornita dall'arco elettrico: la corrente passa attraverso la carica e il riscaldamento avviene principalmente per irraggiamento; viene effettuata un'importante integrazione energetica con l'impiego di bruciatori ossigeno-metano, l'ausilio di lance per l'insufflazione di ossigeno e con l'insufflazione di polverino di carbone: entro un limitato volume si raggiungono elevate temperature (dell'ordine dei 3500°C). La fusione viene condotta con la presenza di scoria schiumosa, ottenuta con l'insufflazione di polverino di carbone e calce, principalmente con funzione di protezione delle pareti dell'involucro dall'irraggiamento.

Figura 3.4.7. Posizionamento della cesta sopra il forno. Figura 3.4.8. Apertura delle valve e caduta del rottame

Al termine della fusione viene effettuata la scorifica, basculando il forno e facendo defluire all'esterno del forno, in una paiola o direttamente a terra, la scoria sovrastante il bagno.

L'acciaio fuso è portato alla composizione richiesta mediante l'aggiunta di additivi e di ferroleghe e con l'insufflazione di ossigeno per il controllo del tenore di carbonio, effettuata tramite lance inserite nel forno. Terminata l'affinazione, l'acciaio viene spillato dal forno e travasato nella siviera, con l'aggiunta di correttivi metallurgici destinati al controllo dell'ossidazione. Lo svuotamento si effettua mediante l'apertura di un foro collocato nella suola del forno (EBT eccentric bottom tapping), che ha sostituito il sistema a canale. In forno viene generalmente mantenuta una quota di acciaio liquido per favorire l'innesco dell'arco elettrico nella nuova carica di rottame

Al termine del ciclo, prima di procedere con una nuova carica di rottame, l'involucro del forno viene controllato per escludere evidenti usure localizzate del refrattario e perdite visibili dei sistemi di raffreddamento. Se necessario, vengono effettuate riparazioni tramite lo spruzzaggio di polvere refrattaria, tecnica che consente di equilibrare l'usura delle varie zone e di far fronte a usure localizzate.

Figura 3.4.9. Spillaggio dell'acciaio. Figura 3.4.10. Spruzzaggio di polvere refrattaria tramite lancia

Attrezzature, impianti, macchine

Principali impianti	Fattori di rischio
Cesta di carica	Infortuni: caduta di rottame, urti delle strutture
Impianto stoccaggio e caricamento additivi	Dispersione di polverosità da tramogge, celle di
Sistema di caricamento (nastri trasportatori, tramogge)	pesatura, nastri di trasporto
Forno elettrico ad arco	Rumorosità, vibrazioni
	Emissioni aerodisperse
Bruciatori e lance ossigeno – combustibili	Incremento del volume di emissioni
(Paiola scoria)	Infortuni: problemi dovuti alla movimentazione
Siviera	Infortuni: problemi dovuti alla movimentazione
Prima sezione raffreddata impianto di captazione	
Cassa polveri o separatore inerziale	

Mansioni della fase

Gli operatori che conducono la lavorazione al forno elettrico compongono una squadra che si alterna con altre durante i turni di lavoro; in ogni squadra sono previste diverse figure professionali con il compito di realizzare:

- mansioni di organizzazione del lavoro e di controllo della qualità del prodotto (in genere si tratta di un responsabile di area e/o di un capo turno);
- mansioni di regolazione del processo e di controllo dell'impianto, governato da un processore che garantisce una marcia standardizzata (primo al forno o maestro forno);
- mansioni di manovra (addetti carroponti e mezzi di movimentazione a terra);
- mansioni prevalentemente esecutive, con interventi manuali in ausilio agli impianti (fonditori);
- mansioni di manutenzione: risulta difficile definire gli interventi occasionali, determinati da manutenzioni, ripristino degli impianti ausiliari e delle attrezzature, malfunzionamenti dell'impianto, incidenti.

Mansione	Posizione di lavoro	Operazione
Addetto carica	Cabina carroponte (cabina forno/ platea se con radiocomando)	Aggancio cesta rottame, trasferimento e scarico del rottame in forno Movimentazioni materiali ausiliari e attrezzature Aggancio, posizionamento e trasferimento paiole
Primo al forno	Cabina forno Platea forno	Controllo e regolazione del processo Manovra del forno e degli impianti ausiliari Ispezioni all'impianto e controllo rivestimento a termine ciclo
Fonditori	Cabina forno Platea Macchina operatrice Pulpito spillaggio Passerella spillaggio	Ausilio al controllo e regolazione Rilievo temperatura, prelievo acciaio Sostituzione cartucce Approvvigionamento materiali ausiliari Preparazione e allungamento elettrodi Pulizie manuali Assistenza ai gruisti per manovre Ripristino forno mediante spruzzaggio Manutenzione porta forno Pulizie Aggiunte in siviera Pulizia e ripristino EBT
Assistente/ capoturno	Area acciaieria Cabina forno Platea	Interventi di coordinamento degli operatori Affiancamento nell'attività di controllo Interventi in caso di inconvenienti e coordinamento della manutenzione

Evoluzione dell'impiantistica e delle mansioni

La Figura 3.4.11 visualizza l'insieme degli sviluppi tecnologici che si sono resi disponibili e che sono stati introdotti per migliorare e rendere più efficiente il processo di fusione. Una continua raffica di innovazioni che mantengono in un sostanziale *revamping* tutta l'acciaieria e che impongono di non considerare maturo e ripetitivo la tecnologia di fabbricazione.

Questa continua rincorsa di maggiore produttività del forno (restituita dal parametro t acciaio prodotte/ ora) si è accompagnata anche con un profondo cambiamento dell'attività di lavoro.

Figura 3.4.11. Indicazione cronologica degli sviluppi tecnologici nei forni e miglioramento dei parametri operativi
Tap to tap (= tempo da spillaggio a spillaggio) (minuti) indicatore sintetico della produttività
Consumo di elettricità (kWh/t acciaio): principale voce degli input energetici
Consumo di elettrodo (kg/t acciaio): principale voce dei materiali di consumo
DC-EAF: consumo di elettrodo con forno a corrente continua, configurazione non presente nel contesto italiano

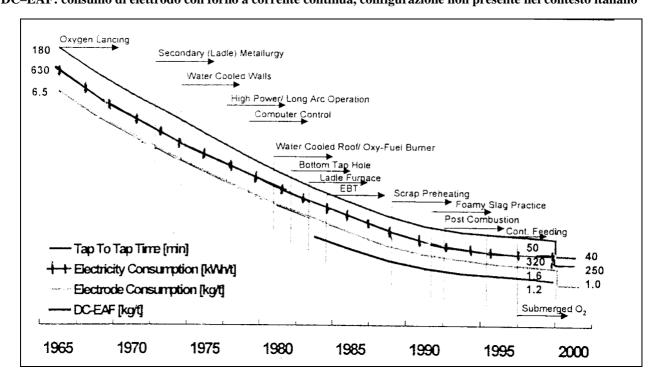


Tabella 3.4.1. Caratteristiche impiantistiche e prestazioni dei 15 forni elettrici nel campione di 13 acciaierie (solidificazione semilavorati in colata continua)

Caratteristiche	Valore medio	Escursione dei valori
Prestazioni	variabilità	
Anno installazione		1975 - 2000
Ultime innovazioni significative		1990 - 2004
Capacità forno (colata in continuo)	85 ± 28	30 - 150
MVA elettrici	68 ± 24	14 - 120
MVA/ t capacità forno	0.80 ± 0.17	0,47 - 1.00
MW termici	28 ± 19	9 -70
Tempo tap to tap (minuti)	56 ± 14	40 - 95
Produttività (t/ ora)	96 ± 32	19 - 150
Aspirazione totale (Nm³/h)	1270000 ± 310000	950000 - 1950000
(Nm³/h / t capacità)	16300 ± 5900	8100 - 33000

10 forni: elephant-house o segregazione reparto

3 forni: dog-house

1 forno: segregazione forno

1 forno: dog-house e segregazione forno

Tabella 3.4.2. Caratteristiche impiantistiche e prestazioni dei 3 forni elettrici nel campione di 3 acciaierie indagate (solidificazione esclusivamente di lingotti)

Caratteristiche	Valore medio	Escursione dei valori
Prestazioni	variabilità	
Anno installazione		1980 - 2000
Ultime innovazioni significative		2000 - 2002
Capacità forno (colata in lingotti)	33 ± 16	18 - 50
MVA elettrici	20± 17	8 - 40
MVA/ t capacità forno	0.55 ± 0.22	0.40 - 0.80
MW termici	non presenti	
Tempo tap to tap (minuti)	78 ± 20	69 - 100
Produttività (t/ ora)	28 ± 20	11 - 50
Aspirazione totale (Nm³/h)		60000 - 600000
(Nm ³ /h / t capacità)		3300 - 20000

² sistemi elephant-house

La Tabella 3.4.1 riporta le caratteristiche dei forni installati nelle acciaierie del campione esaminato: fra i produttori di blumi e billette prodotte con colata continua, un gruppo consistente mantiene il forno di fusione ai vertici della produttività (fino a 150 t/ ora di produttività), inserendo progressive e tempestive innovazioni. Si segnala che in questo campione sono compresi impianti ai vertici delle prestazioni mondiali.

Pochi produttori mantengono impianti non di punta, con produzioni orarie ormai non più ai vertici: in questi casi evidentemente si preferisce occupare un ruolo marginale, che evita nel contempo gli investimenti delle innovazioni e le incertezze dei risultati conseguibili. Questa è la situazione anche dei forni destinati alla solidificazione di lingotti (Tabella 3.4.2), dove la velocità di fusione non costituisce il requisito caratterizzante le prestazioni.

Figura 3.4.12. Insufflazione di ossigeno con lancia manovrata a mano: condizioni di lavoro presenti in acciaierie a bassa produttività destinate alla solidificazione di lingotti (e solidificazione di getti: v. comparto Fonderie)
Figura 3.4.13. Insufflazione di ossigeno e carbone con lancia montata su manipolatore governato da cabina forno

Per meglio comprendere queste modifiche nella situazione della siderurgia elettrica italiana è stata fatta una lettura dell'evoluzione impiantistica e produttiva di un forno elettrico (Tabella 3.4.3), affiancata all'analisi delle modalità di lavoro degli addetti (Tabella 3.4.4). Questa analisi si riferisce a un impianto che può essere definito *forno veloce*, dove negli ultimi anni sono state introdotte molteplici soluzioni tecnologiche destinate al miglioramento della produttività dell'impianto e della qualità dell'acciaio.

Questa evoluzione riferita all'impianto principale dell'acciaieria, che regola e condiziona il regime di tutta l'attività, costituisce un significativo punto di riferimento e consente di leggere in modo efficace l'evoluzione delle condizioni di impegno lavorativo dell'intero comparto, per quanto riguarda le mansioni riferite al normale funzionamento degli impianti.

¹ sistema ad aspirazione bilanciata

Negli ultimi anni si evidenziano:

- una riduzione delle postazioni di lavoro non protette (cioè eseguite all'esterno di cabine e pulpiti), ma che si accompagna, e rende possibile, un aumento dei cicli di lavoro realizzati nello stesso periodo: di conseguenza aumenta la frequenza delle operazioni rimaste da eseguire in postazioni non protette;
- sempre meno lavori manuali, ma con maggiore frequenza, legata alla riduzione dei tempi di ciclo;
- sempre più controlli di processo, con intervento nelle emergenze e nelle situazioni di deviazione del funzionamento.

Si consideri anche che nelle acciaierie di qualche anno fa aveva importanza ed emergeva l'esperienza, mentre nelle acciaierie di oggi la tecnologia è fornita dai costruttori e incorporata nel software, quindi disponibile anche a persona senza specifica esperienza: gli interventi di manutenzione, cioè quelli sporadici e non prevedibili, hanno assunto sempre maggiore rilievo e impegnano quote di lavoro sempre più elevate: la presenza di addetti durante il turno in posizioni fisse di intervento e di controllo si è diradata, surrogata dall'automazione e dalla meccanizzazione, è ha assunto maggiore importanza il lavoro da effettuare per garantire la continuità del funzionamento dell'impianto.

Tabella 3.4.3. Evoluzione impiantistica di un'acciaieria assunta a riferimento dell'evoluzione del comparto

		1991	1994	1996	2003
PRODOTTO	TIPO	ACCIAI DI BASE E DI QUALITÀ			
PRODUTTIVITA' t anno/addetto		3300	4100	4300	6500
CAPACITA' NOMINALE FORNO	t	85	85 NUOVO FORNO	100 NUOVO TINO	110 NUOVO TINO
DURATA CICLO TAP TO TAP	minuti	60	48	55	52
PRESTAZIONI DEL FORNO	t/h	85	95	100	130
POTENZA ELETTRICA	MVA	40 + 20 %	55 + 20 % NUOVO TRASFORMATORE	55 + 20 %	75+20% NUOVO TRASFORMATORE
POTENZA TERMICA	MW	24 4 X 6 BRUCIATORI	24 4 X 6 BRUCIATORI	40 4 X 10 BRUCIATORI	40 4 X 10 BRUCIATORI
		3 LANCE CARBONE	3 LANCE CARBONE	3 LANCE CARBONE	3 LANCE CARBONE
INSUFFLAZIONE OSSIGENO		TRAMITE LANCIA 40 Nm3/t	TRAMITE LANCIA 45 Nm3/t	TRAMITE LANCIA 50 Nm3/t	DA PARETE 40 Nm3/t
INSUFFLAZIONE CALCE E ADDITIVI TRATTAMENTO		LANCIA MANUALE PORTA FORNO	LANCIA CALCE PORTA FORNO	LANCIA CALCE PORTA FORNO	NUOVO IMPIANTO PARETE FORNO INIEZIONE ADDITIVI NUOVO IMPIANTO
SCORIA FORNO E SIVIERA					RICICLO SCORIA
SISTEMA SPILLAGGIO		A CANALE	A CANALE	EBT	EBT PARZIALE
SEGREGAZIONE AREA FORNO		NO	PARZIALE (lato colata)	PARZIALE (lato colata)	(in completamento lato campata servizi forno)
ASPIRAZIONE PRIMARIA	Nm3/h	117.000	150.000	150.000	150.000 – 190.000 NUOVO COOLER
ABBATTIMENTO FUMI TIPO		UMIDO VENTURI	SECCO MANICHE	SECCO MANICHE	SECCO MANICHE
ASPIRAZIONE SECONDARIA	Nm3/h	350.000	350.000	350.000	650.000
ABBATTIMENTO FUMI	TIPO	SECCO MANICHE	SECCO MANICHE	SECCO MANICHE	SECCO MANICHE
IMPIANTO AFFINAZIONE		SIVIERA	IMPIANTO LF	IMPIANTO LF	IMPIANTO LF
LINEE COLATA N°		NUOVO IMPIANTO 1 x 5	NUOVA LINEA 1 x 6	1 x 6	AUMENTO SEZIONE 1 x 6
CAPACITA' DI SOLIDIFICAZIONE	t/h	100	120	140	160
SISTEMI MOVIMENTAZIONE					
FORNO CESTA		2 CARRI CESTA 1 GRU CESTA	2 CARRI CESTA 1 GRU CESTA	2 CARRI CESTA 1 GRU CESTA	CARRO TINO FORNO 3 CARRI CESTA 1 GRU CESTA
SIVIERA		2 GRU SIVIERA	1 GRU SIVIERA	1 GRU SIVIERA	1 GRU SIVIERA
		CARRO SIVIERA	CARRO SIVIERA TORRETTA LF	CARRO SIVIERA TORRETTA LF	CARRO SIVIERA TORRETTA LF
			TORRETTA COLATA	TORRETTA COLATA	TORRETTA COLATA

Tabella 3.4.4. Evoluzione delle modalità di lavoro nella preparazione dell'acciaio liquido Posizioni di lavoro e operazioni effettuate dagli addetti forno e siviera

1991	1994	1996	2003	
CABINA FORNO CABINA FORNO NUOVA CABINA FORNO SOPRAELEVATA			NUOVA CABINA FORNO SOPRAELEVATA	
di seguito sono indicate POSIZIONI e operazioni effettuate esternamente alla cabina forno				
PULPITO ESTERNO Manovra componenti forno	PULPITO ESTERNO manovra componenti forno	Posizione di lavoro eliminata Operazioni in cabina forno		
CABINA ADDITIVI carico sili e alimentazione forno	CABINA ADDITIVI carico sili e alimentazione forno	Posizione di lavoro eliminata		
	PLANCHE	ER FORNO		
insufflazione calce con lancia manuale	azionamento lancia calce da quadro comando esterno	Operazione automatizzata	Operazione automatizzata anche per iniezione additivi	
prelievo provini	prelievo provini	Operazione automatizzata		
rilievi di temperatura	rilievo di temperatura	rilievo di temperatura	rilievo di temperatura	
controllo affinazione	Operazione eliminata			
manutenzione scalino porta	manutenzione scalino porta	manutenzione scalino porta	manutenzione scalino porta	
controllo/ pulizia foro per lancia ossigeno	controllo/ pulizia foro per lancia ossigeno	controllo/ pulizia foro per lancia ossigeno	Operazione eliminata per eliminazione lancia	
pulizie varie con muletto	pulizie varie con muletto	pulizie varie con muletto	pulizie varie con muletto	
allungamento elettrodi	allungamento elettrodi	allungamento elettrodi	allungamento elettrodi	
	SPILLA	AGGIO		
apertura bussaggio	apertura bussaggio	apertura saltuaria bussaggio solo per malfunzionamento	apertura saltuaria bussaggio solo per malfunzionamento	
approvvigionamento materiale refrattario	approvvigionamento materiale refrattario	Inserito dispenser di materiale refrattario	Inserito impianto pneumatico di trasporto materiale refrattario	
aggiunta leghe e polveri di copertura aggiunta leghe e polveri di copertura				
chiusura bussaggio	chiusura bussaggio	controllo visivo apertura distributore per chiusura	controllo visivo	
NASTRO CARICO ADDITIVI alimentazione siviera	NASTRO CARICO ADDITIVI alimentazione siviera	posizione di lavoro disattivata	posizione di lavoro disattivata	
PULPITO SPILLAGGIO controllo spillaggio	PULPITO SPILLAGGIO controllo spillaggio	CABINA SPILLAGGIO controllo spillaggio	Realizzato transito protetto; cabina non più utilizzata	
PULPITO AFFINAZIONE IN SIVIERA carico e spostamento carriole rilievo temperatura	posizione di lavoro disattivata			
3 GRU operazioni in cabina carroponte	2 GRU operazioni in cabina carroponte	2 GRU operazioni in cabina carroponte	2 GRU (radio comandate) OPERATORI IN CABINA FORNO E PLANCHER	
CABINA LF				
	di seguito sono indicate F	POSIZIONI e operazioni effettuate est	ernamente alla cabina LF	
	PLANCHER LF rilievo temperatura prelievo provino carico additivi	PLANCHER LF sostituzione cartucce campionatori e termocoppia carico additivi	PLANCHER LF sostituzione cartucce campionatori e termocoppia	
ADDETTI FORNO/ TURNO 5	ADDETTI FORNO/ TURNO 5	ADDETTI FORNO/ TURNO 4	ADDETTI FORNO/ TURNO 3	
	ADDETTI LF/ TURNO 1	ADDETTI LF/ TURNO 1	ADDETTI LF/ TURNO 1	

Rischi di natura infortunistica

Tabella 3.4.5. Preparazione acciaio.

Sintesi dei rischi di natura infortunistica: identificazione, danni, interventi di prevenzione

Alcune voci risultano dall'analisi statistica degli eventi infortunistici: questi rischi specifici, indicati con 1 pericolosa, la modalità di accadimento, il danno rilevato, i fattori di rischio che sono stati valutati evidenti

	IDENTIFICAZIONE RISCHIO SPECIFICO →OPERAZIONE →MODALITA'	DANNO ATTESO DANNO RILEVATO	INTERVENTI DI PREVENZIONE FATTORI DI RISCHIO EVIDENTI
15	Caduta di rottame su posizioni di lavoro e di manutenzione interessate dal transito sospeso della cesta di carica → Trasferimento con carroponte cesta carica → Investimento da parte del rottame in seguito a urto cesta contro strutture fisse	Schiacciamento e fratture Esiti mortali	Lay-out che escludono abituali posizioni di lavoro Adozione di ceste con valve normalmente chiuse Procedure per interventi nelle aree sottoposte a carico sospeso
R5	 → Trasferimento con carroponte della cesta di carica → Proiezione di frammenti derivanti da esplosione tamburo freno 	Lesioni traumatiche Esiti mortali	Impianti di aspirazione e pulizia dell'area Raddoppio dei pattini striscianti Procedura di prova freno a pieno carico
R6	Fuoriuscita rottame e metallo fuso durante la fase di caricamento Interventi di pressatura rottame con cesta e di pulizia bordo tino	Lesioni traumatiche Ustioni	Strutture e schermi di protezione Procedura confezionamento cesta Procedura di allontanamento e permanenza in posizioni protette durante il caricamento
	Esplosione durante la fase di caricamento e di fusione in forno (vedi fase PREPARAZIONE ROTTAME)	Lesioni traumatiche Ustioni	Tutto il personale sempre in posizione protetta durante la carica Procedura per la manipolazione di corpi cavi e rottame non conosciuto
R7	Esplosione impianto alimentazione ossigeno	Lesioni traumatiche Possibili esiti mortali	Sistemi di ricambio aria Sistemi di rilevazione Manutenzione periodica degli impianti
<u>^</u>	 → Preparazione dell'elettrodo → Schiacciamento fra l'elettrodo movimentato e struttura fissa 	Fratture alle mani	Inserimento di attrezzature adeguate Formazione del personale Procedure
	Caduta elettrodo o spezzone durante sostituzione e allungamento Caduta carichi sospesi nell'approvvigionamento dei materiali	Possibili esiti mortali Lesioni e ustioni Possibili esiti mortali Lesioni e ustioni	Flussi dei materiali Procedure operative Flussi dei materiali Procedure operative
	ausiliari in platea forno Investimento da carrello elevatore che agisce nelle aree utilizzate come deposito/ magazzino	Possibili esiti mortali Lesioni e ustioni	Flussi dei materiali Procedure operative
	Salita e discesa dai mezzi di trasporto Transito e permamenza all'interno di	Lesioni e distorsioni Fratture Ustioni da calore	Manutenzione e pulizia Vedi Fase TRASFERIMENTI
I 6	segregazioni (tipo dog-house) → Operazioni di controllo dello stato del forno a termine ciclo → Investimento da materiale ustionante dopo esplosione	Eventi mortali Ustioni da calore Lesioni traumatiche Esiti mortali	Configurazione impiantistica Componenti non modificati Manutenzione periodica Posizioni di intervento protette Procedure definite e praticate
I 7	→ Spillaggio Investimento da materiale ustionante dopo esplosione	Ustioni da calore Lesioni traumatiche Esiti mortali	Configurazione impiantistica Procedure definite ed effettivamente praticate
<u> </u>	 → Operazioni manuali realizzate alla porta del forno → Investimento da parte di materiale ustionante (per esempio: reazioni incontrollate della scoria) 	Ustioni da calore	Adozione di manipolatore per lancia Schermi di protezione Manutenzione delle protezioni Adeguati mezzi di protezione personale

\rightarrow	Operazioni realizzate alla porta del forno	Ustioni da calore	Configurazione impiantistica
\rightarrow	Investimento da materiale ustionante	Contusioni e lesioni	Posizioni di intervento protette
	dopo esplosione	traumatiche	Manutenzione sistemi di raffreddamento
			(vedi anche fase MANUTENZIONE)
			Definizione e applicazione di procedure
			Impiego di adeguati DPI
\rightarrow	Bussaggio	Ustioni	Adozione di sistema EBT
\rightarrow	Investimento da parte di materiale		Posizioni di intervento protette
	ustionante		Definizione di procedure adeguate
			Corretto impiego di DPI adeguati

Si veda anche la fase "Manutenzioni, ripristini, lavori ausiliari"

Rischi di natura igienico – ambientale

Tabella 3.4.6. Preparazione acciaio Sintesi dei rischi di natura igienico ambientale: identificazione, danni, interventi di prevenzione

	IDENTIFICAZIONE RISCHIO	DANNO ATTESO	FATTORI DI RISCHIO EVIDENTI INTERVENTI DI PREVENZIONE
A1	Polveri aerodisperse e fumi metallici Operazioni eseguite in prossimità del forno Emissioni non captata dal forno Trasporto materiali additivi (calce, carbone, ferroleghe)	Bronchite cronica, Pneumoconiosi da polveri Irritazione vie respiratorie e occhi	Adeguamento aspirazione sistema secondario del forno Ottimizzazione impianto di aspirazione trasporti e stoccaggi materiali additivi Frequente pulizia delle zone di accumulo
A2	Esposizione a rumore - In particolare durante le fasi di caricamento del forno e delle fasi iniziali di fusione	Danni uditivi Danni extrauditivi	Segregazione del forno (intervento efficace per le posizioni esterne alla segregazione) Realizzazione della cabina controllo forno e postazioni di presenza discontinua protette Vigilare sull'impiego dei DPI
	Vibrazioni - Impiego di eventuali macchine per le operazioni ausiliarie alla porta del forno	Traumi e alterazioni degenerative ai sistemi articolari Morbo di Raynaud Effetti sui nervi e sui muscoli	Inserimento di posizioni e sedili smorzanti
A3	Stress e affaticamento da calore - Interventi presso la porta del forno - Spillaggio e ripristino foro/ canale di colata - Interventi di controllo a termine ciclo	Aggravamento problematiche cardiocircolatorie, digestive e renali	Obiettiva difficoltà a proteggere le posizioni di intervento Adozione di DPI specifici
	Correnti e sbalzi termici Interventi esterni alle cabine protette: l'area forno è caratterizzata da elevata ventilazione indotta anche dalla aspirazione dell'impianto	Alterazioni degenerative tessuti periarticolari Malattie da raffreddamento	Area critica anche tenendo presente la tipologia impiantistica
	Radiazioni infrarosse e ultraviolette - controllo superfici incandescenti - controllo materiale fuso - operazioni di scorifica - operazioni di travaso	Processi di invecchiamento dell'occhio Cataratta Danneggiamento della retina	Inserimento di schermi Adozione di DPI specifici

A1, A2, A3: vedi Capitolo 3.1 "Analisi rischi e interventi comuni a più fasi"

Appalto a ditta esterna

Nessuna presenza rilevata nel campione esaminato.

Ricorrenze legislative segnalate nell'analisi degli infortuni gravi

Numero	Legge/ Ar	ticolo
5	547/263	carenti protezioni sui forni e nelle operazioni di scorifica e di spillaggio
4	547/374	carente manutenzione delle strutture e degli impianti
4	547/383	protezione delle mani
4	547/4	obblighi dei datori di lavoro, dei dirigenti e dei preposti
3	547/377	mancati requisiti e disponibilità dei mezzi di protezione personale
2	547/382	protezione degli occhi
2	626/4	obblighi del datore di lavoro, del dirigente, del preposto
1	547/241	requisiti di resistenza e di idoneità per impianti, apparecchi e recipienti in pressione
1	547/261	temperature elevate nei posti di lavoro e di manovra dei forni
1	547/267	quadri elettrici aperti
1	547/354	concentrazioni pericolose e segnalatori automatici per gas esplosivi
1	547/76	organi di comando per la messa in moto delle macchine
1	626/35	obblighi del datore di lavoro in merito all'uso delle attrezzature da lavoro
1	626/43	obblighi del datore di lavoro in merito all'uso dei dispositivi di protezione personale

"Gli interventi"

COMPARTO Fase di lavorazione	ACCIAIERIA PREPARAZIONE ACCIAIO
Operazione specifica	TRASFERIMENTO CON CARROPONTE DELLA CESTA DI CARICA
TIPOLOGIA INFORTUNIO	DALLA PRESSA ALLA PLATEA FORNO ELETTRICO 15
Modalità di accadimento Mansioni coinvolte	Investimento da parte del rottame in seguito a urto della cesta contro strutture fisse Durante la traslazione della cesta ad apertura rapida, effettuata con la gru di carica, dalla postazione della pressa rottami alla platea antistante il forno elettrico ad arco, per una probabile interruzione di corrente, il dispositivo di apertura urtava contro il condotto di aspirazione dei fumi provocando l'apertura delle valve e la caduta del rottame nella zona sottostante dove due lavoratori stavano terminando un intervento di manutenzione sulla lancia ossigeno carbone Addetto al forno, Manutentore meccanico
Osservazioni Discussione	Acciaieria "Progettualmente infelice". Il percorso di trasferimento cesta, era stato spostato dalla posizione iniziale che terminava in platea forno, al centro della campata acciaieria a causa dell'inserimento nel ciclo di un Pressa rottami, che per motivi operativi era stata posta al centro campata. Questa scelta comportava 48 trasferimenti della cesta, con la gru di carica, sopra la platea forno, la postazione di comando spillaggio, la zona rifacimento elettrodi e la zona L.F.
Fattori di rischio evidenziati	STRUTTURE E SPAZI Progettazione errata. La postazione di caricamento cesta al Parco rottami, normalmente posta al centro dello stesso per potere garantire un lavoro più fluido con la possibilità di potere operare con due gru, dovrebbe trovarsi in corrispondenza con la platea forno. In questo caso la campata rottami dovrebbe essere sfalsata rispetto alla campata forni. Inserimento del nuovo impianto fumi senza uno studio attento delle sezioni del capannone. Interferenza fra aree di intervento (manutenzione) e aree rese pericolose dai carichi sospesi MOVIMENTAZIONE MECCANICA Cesta ad apertura rapida PROCEDURE OPERATIVE Mancanza di coordinamento fra gli interventi Mancata predisposizione di procedure di lavoro. Mancata predisposizione di "Permessi di lavoro" per "lavori a rischio" Manomissione dei comandi gru Manomissione del freno di traslazione gru

Interventi realizzati

- o Installazione di sistemi di controllo automatico del percorso cesta tale da non permettere urti contro parti fisse.
- o Potenziamento di lampeggianti rotanti sulla gru, anche con rotazione sull'asse orizzontale.
- o Installazione di lampeggianti rotanti installati sulle colonne, associati a segnaletica esplicativa che si attivavano al passaggio della gru di carica.
- o Formazione del personale sulla gestione delle operazioni di manutenzione con definizione delle modalità di segnalazione, anche ottica delle zone oggetto di manutenzione (tipo lavori stradali).
- o Predisposizione di nuovo modello controllo dispositivi di sicurezza gru. Non di segnalazione anomalia, ma di verifica di efficienza dei dispositivi di sicurezza e del sistema frenante.
- o Sostituzione delle ceste ad apertura rapida con ceste ad apertura lenta (ceste con valve normalmente chiuse)

Interventi fattibili
Realizzazione di un percorso in piano
(binario/carrello) in tunnel in
calcestruzzo lungo un lato del parco
rottami dotato di piattaforme girevoli
tali da consentire l'ingresso cesta in
prossimità della platea forno

Interventi potenzialmente fattibili
Spostamento degli impianti in maniera
tale che la platea forno si venga a
trovare in corrispondenza dell'area
pressa. Con questa configurazione si
potrebbe ridurre la necessità di
manodopera in quanto le operazioni di
pressatura rottame potrebbero venire
gestite in cabina forno con
l'eliminazione della mansione

COMPARTO ACCIAIERIA Fase di lavorazione **CARICAMENTO FORNO**

Operazione specifica MOVIMENTAZIONE CESTA DI CARICA

FASE DI DISCESA PER DEPOSITO IN AREA DAVANTI AL FORNO

TIPOLOGIA RISCHIO

Modalità di accadimento Terminata la traslazione della cesta dalla pressa rottami alla zona di deposito in area forno, durante la fase di discesa, causa una breve interruzione di corrente, l'intervento automatico del freno dell'argano non è stato in grado di frenare la discesa e l'aumento di velocità ha fatto esplodere il tamburo del freno, i cui frammenti hanno sono stati proiettati in un ampio raggio forando anche il tetto del capannone.

Solo incidente

Mansioni coinvolte Gli operatori (Addetti forno, Capo turno, Capo acciaieria) erano defilati, in cabina

forno, come da procedura

Osservazioni La portata della gru era stata aumentata con interventi che si sono limitati alle Discussione

strutture metalliche

Il percorso cesta prevedeva percorsi eccessivi

Vi era un solo pattino di contatto per ogni barra di alimentazione

La polverosità dell'area era notevole

Il lavoro a 11 turni, rendeva più difficile la regolazione dei freni causa la

significativa variazione di temperatura del freno gru

Fattori di rischio evidenziati Strutture e spazi: percorso di traslazione cesta non ottimale (eccessivo)

Polveri e calore

Configurazione impiantistica inadeguata

Mezzo di trasporto non idoneo

Interventi Potenziamento impianto di aspirazione forno elettrico.

Potenziamento impianto aspirazione silos ferroleghe

Raddoppio dei pattini striscianti per ciascuna sbarra di alimentazione

Realizzazione di bocchette di aspirazione lungo le vie di corsa e silos ferroleghe Raddoppio degli interventi di aspirazione al suolo e lungo le vie di corsa Procedura con obbligo di prova freno a pieno carico nella fase di discesa

Schemi, disegni, fotografie

Commenti a schemi, disegni, fotografie

Il tetto del capannone forato dai frammenti del tamburo esploso

Il carrello della gru a ponte oggetto dell'incidente Si noti la precaria chiusura degli armadi elettrici

COMPARTO Fase di lavorazione Operazione specifica RISCHIO SPECIFICO	ACCIAIERIA PREPARAZIONE ACCIAIO CARICAMENTO CESTA R6. Fuoriuscita rottame e metallo fuso durante la fase di caricamento Interventi di pressatura rottame e di pulizia bordo tino
Mansioni coinvolte	Addetti che operano nell'area forno Addetto al forno Gruista carica
Osservazioni Discussione	Nel caso di cesta "alta", cioè quando il rottame supera il bordo superiore del tino, è necessario procedere a una sua asportazione tramite ragno o calamita, oppure alla pressatura del rottame stesso utilizzando la cesta di carica Nel caso il rottame abbiamo ostruito il bordo tino e impedisca la rotazione e chiusura della volta è necessario intervenire per una pulizia del bordo, con l'imperativo di riprendere l'attività di fusione nel più breve tempo possibile
Fattori di rischio evidenziati	CONDIZIONI AMBIENTALI Condizioni estreme (calore radiante, polverosità) Condizioni di stress IMPIANTI E MACCHINE Configurazione impiantistica inadeguata Componenti di impianti mal realizzati Mancanza di schermi/ coibentazioni Posizione di lavoro senza condizioni di sicurezza Assenza idonei dispositivi di comunicazione fra gli operatori PROCEDURE OPERATIVE Procedure mancanti/ carenti/ definite ma errate Procedure non applicate (in genere questa condizione si determina in presenza di ceste mal confezionate da parte degli addetti parco rottame o di errata valutazione di termine fusione da parte degli addetti forno)

Esempio di procedura ai fini della sicurezza

Obiettivi da conseguire nel confezionamento delle ceste:

- Peso predeterminato
- Volume controllato
- Disposizione del rottame tale da consentire una discesa equilibrata con l'apertura delle valve
- Disposizione del rottame all'interno del forno tale da evitare scariche dell'arco su pezzi di elevata massa. Il confezionamento delle cariche deve essere effettuato disponendo il rottame pesante, quali lingotti e pezzi compatti, sul fondo della prima cesta. In cesta non vanno caricati comunque rottami con lunghezza superiore a 1,5 m. Il riciclo dei fumi avviene tramite sistemi di insufflazione pneumatica.

 $La\ cesta\ deve\ essere\ riempita\ in\ modo\ tale\ che\ il\ rottame\ non\ fuoriesca\ dalla\ stessa.$

Commenti a schemi, disegni, fotografie

In alcune situazioni un addetto deve intervenire a controllare le ostruzioni che impediscono la rotazione della volta e in ausilio alle operazioni di pulizia, in particolare tenendo conto della ridotta visibilità per il gruista determinata dalla presenza della cesta e dell'elevata emissione di fumi e polveri

COMPARTO Fase di lavorazione Operazione specifica TIPOLOGIA INCIDENTE	ACCIAIERIA Adduzione di ossigeno si vari impianti Distribuzione dell'ossigeno proveniente dall'impianto centralizzato R7
Modalità di accadimento	Esplosione/ deflagrazione causata dalla saturazione della cabina di distribuzione a seguito di una perdita di ossigeno da una delle condotte presenti. Esplosione innescata da trafilamento di olio o dalla formazione di cariche elettrostatiche.
Mansioni coinvolte	Nessuna
Osservazioni Discussione	L'incidente non ha coinvolto nessuna persona Si ritiene di segnalare questo evento per le informazioni di prevenzione in esso contenute, a prescindere dal fatto che l'incidente non è evoluto in infortunio
Fattori di rischio evidenziati	 mancanza di ventilazione naturale e/o artificiale all'interno della cabina finalizzata a favorire una rapida fuoriuscita dei gas; mancanza di sistemi di rilevazioni atti a rilevare la presenza di gas in concentrazioni pericolose; mancanza di un qualsiasi sistema di intercettazione dei gas; presenza di cavi elettrici non pertinenti all'impianto di distribuzione dei gas; mancata manutenzione degli impianti.
Interventi	 Prevedere adeguati sistemi che facilitino il ricambio dell'aria: finestre/griglie di ripresa o sistemi di ricambio dell'aria artificiali collegati al sistema di rilevazione gas (superata una soglia di allarme, l'impianto entra in funzione); installazione di sistemi di rilevazione della concentrazione dei gas presenti nell'ambiente (questi, oltre ad essere collegati a dei sistemi di ventilazione artificiali, potranno essere collegati a delle valvole d'intercettazione che bloccano l'afflusso del gas in caso di perdite); manutenzione periodica degli impianti.

COMPARTO	ACCIAIERIA			
Fase di lavorazione	Ripristino forno a term	Ripristino forno a termine ciclo		
Operazione specifica		scorifica delle condizioni interne del tino, dei refrattari,		
	dei setti porosi e dei vai	ri circuiti di raffreddamento		
TIPOLOGIA INFORTUNIO	I 6 🗘			
Modalità di accadimento	Investimento da parte di	materiale ustionante dopo esplosione		
	Avvicinandosi alla porta	di scorifica, a una distanza di circa un metro, è stato		
	investito da una fiammat	a prodotta da un'esplosione generatosi all'interno del forno. a volta del forno era chiusa.		
		pabilmente è stata causata da una perdita di acqua dal		
		nto di un bruciatore. Questa perdita ha formato un blocco di		
	materiale refrattario umio	do, che crollando e inglobando umidità nel piede liquido di		
Manajani aginyalta	acciaio ha provocato l'es			
Mansioni coinvolte	forno al termine di ogni o			
Osservazioni		per questa specifica lavorazione (scarpe anti infortunistiche,		
Discussione		no inidonei rispetto allo specifico rischio.		
		empio casco ignifugo) era lasciata alla discrezionalità dei		
	singoli operatori.			
		ritenevano persone esperte, non avevano mai letto nessuna		
		n sala controllo e taluni invece, pur avendole lette,		
		dicazioni del primo di forno anche se queste differivano da		
		ala di controllo però erano esposte diverse procedure inerenti		
		a eccezione di quelle relative a frequenza dei controlli		
		resenza d'acqua nel forno, quasi a sottolineare la volontà di		
F # 11 1 11 11 11		a non corretta che si era instaurata per queste operazioni		
Fattori di rischio evidenziati		ei rischi relativi alla conduzione del forno elettrico na 2 lettera a del D.Lgs 626/94).		
Interventi		capotte alluminizzate, guanti anticalore, visiera "dorata"		
	riflettente, elmetto con sa	ahariana e ghette.		
	Fattibilità di collocare un	no schermo o altra barriera atta a fermare le proiezioni di		
	materiali incandescenti, o	compatibilmente alle necessità del controllo visivo da parte		
	dell'operatore. Tale dispo	ositivo comporta la soluzione di non facili problemi tecnici		
		ssa, collocata davanti all'apertura, andrebbe ad interferire con		
		ella lancia di adduzione dell'ossigeno e con le operazioni di		
		ltre, la facilità di deterioramento della protezione stessa nella		
	fase di carico forno la rei	nderebbe inefficace		
	Adozione di procedure o	perative di controllo del forno da eseguire con la volta		
		e eventuali sovrapressioni andrebbero a sfogarsi verso l'alto e		
	non attraverso la porta di			
Schemi, disegni, fotografie				
	re all'atto del controllo	Tuta ignifuga alluminizzata non utilizzata		

Schemi, disegni, fotografie
Indumenti impiegati dall'operatore all'atto del controllo
dalla porta del forno del tino interno.

Tuta ignifuga alluminizzata non utilizzata

COMPARTO	ACCIAIERIA
Fase di lavorazione	PREPARAZIONE ACCIAIO. AFFINAZIONE
Operazione specifica	OPERAZIONI DI CONTROLLO AL TERMINE DELL'AFFINAZIONE
TIPOLOGIA INFORTUNIO	I 6 bis 🔨
Modalità di accadimento	Investimento da parte di materiale ustionante dopo esplosione
Mansioni coinvolte	Addetti forno
	Addetti manutenzione
	Addetti in transito (compresi addetti esterni)

Discussione

Questa problematica rinvia agli aspetti di gestione e manutenzione dei sistemi di raffreddamento del forno.

Le possibili cause che comportano il rischio di esplosione all'interno del forno elettrico sono perfettamente conosciute dai tecnici che lavorano nel settore: questo rischio è determinato principalmente dall'acqua che viene introdotta e inglobata nel materiale fuso e che può derivare dal rottame o dai sistemi di raffreddamento dei componenti del forno. Sistemi di raffreddamento presenti in un forno elettrico

- componenti elettrici (morse porta elettrodi, tubi, corde portacorrente)
- travi porta volta, gomito fisso aspirazione fumi
- anello esterno della volta, pannelli della volta
- porta del forno, voltino della porta, anello superiore del tino, pannelli del tino, economizzatori
- lance e bruciatori

Il forno risulta fasciato di acqua in circolazione (centinaia di metri cubi per ora).

Possono determinare situazione di pericolo i componenti che, in caso di rottura, scaricano acqua nel forno e, ancora più critica, la situazione in cui questa perdita non sia rilevabile in maniera visibile, come nel caso dei pannelli del tino che possono perdere acqua e impregnare i refrattari delle pareti e della suola.

La condizione di esplosione si determina allorquando la perdita di acqua rimanga inglobata all'interno della massa fusa, determinando una rapida evaporazione con incremento del volume e sovrapressione.

Fattori di rischio evidenziati

Vengono indicate le condizioni che hanno determinato l'esplosione e le condizioni presenti sull'impianto che hanno reso possibile che l'evento iniziale evolvesse fino alle lesioni/ morte per gli operatori

Condizione: entrata di acqua all'interno del forno dalla perdita di un tubo flessibile del circuito di un pannello del tino

- configurazione del tubo flessibile, anziché raccordo rigido
- manutenzione meccanica del fasciame
- manutenzione refrattaria
- organizzazione dell'approvvigionamento del materiale da spruzzo per le riparazioni durante il ciclo
- manutenzione dei circuiti di raffreddamento

Condizione: presenza di acqua sul bagno fuso

- configurazione dei sistemi di raffreddamento
- manutenzione dei sistemi di raffreddamento
- manutenzione sistemi di controllo
- assenza dei sistemi di controllo

Condizione: proiezione di lamiere e materiale fuso

- configurazione fasciame tino
- manutenzione fasciame tino
- manutenzione refrattario

Condizione: caduta dei pannelli della volta

- configurazione volta a pannelli
- configurazione supporti
- configurazione sistemi anticaduta

Condizione: lesioni e morte

- manutenzione del sistema di aggiunte ferroleghe in siviera durante spillaggio: quindi presenza di addetto esposto
- mancanza procedura formalizzata in casi di emergenza
- indumenti protettivi mancanti o non adeguati

Esplosione distruttiva che ha provocato la demolizione dei componenti strutturali del forno: si osserva la caduta nel bagno dei pannelli di raffreddamento della volta, la proiezione di un braccio porta elettrodo, lo scardinamento della porta del forno, la proiezione di materiale fuso da tutti i varchi che si sono creati nella zona del tino e sotto tino

COMPARTO Fase di lavorazione Operazione specifica RISCHIO SPECIFICO	ACCIAIERIA PREPARAZIONE ACCIAIO SPILLAGGIO I 7. Esplosione durante la fase di spillaggio
Modalità di accadimento	Investimento da parte di materiale ustionante e di componenti proiettati dall'esplosione
Mansioni coinvolte	La sovrapressione determinata dall'esplosione ha proiettato la volta in alto per farla poi ricadere in campata colata Addetti che operano nell'area forno

Discussione

Si veda quanto indicato nella scheda precedente. In questo caso si vuole sottolineare un particolare meccanismo di inglobamento dell'acqua. In questo incidente l'acqua, già osservata sul bagno ("assuefazione al malfunzionamento dei componenti di raffreddamento") derivante da una significativa perdita di un pannello del tino, viene inglobata in fase di spillaggio durante la discesa dell'acciaio nel foro di colata EBT "eccentric bottom tapping" posto nella suola del forno

Fattori di rischio evidenziati

Lo spillaggio collocato nella suola trasferisce l'acciaio per svuotamento dal basso, anziché per travaso come con il sistema a canale. Il rischio di inglobamento di acqua presente sulla superficie si determina nel "gorgo" di discesa Si tenga presente che anche con l'inclinazione del forno per il travaso con il sistema a canale la superficie del bagno viene messa in movimento, con il rischio di avere un' "onda" di materiale fuso che va a ricoprire il bagno Quindi la prevenzione è comunque da ricondurre a corrette procedure operative che escludono la presenza di acqua sul bagno e, comunque, procedure operative che in presenza di acqua, prevedano l'apertura della volta e la completa evaporazione dell'acqua, prima di qualunque ulteriore operazione

Schemi, disegni, fotografie

Commenti a schemi, disegni, fotografie

Esplosione distruttiva che ha trovato sfogo verso l'alto proiettando la volta e lasciando sostanzialmente intatto il tino e gli altri componenti La configurazione di raffreddamento della volta a pannelli è stata ora universalmente sostituita da sistemi di raffreddamento monolitici, che evitano comunque caduta di pannelli nel bagno, eventualmente in seguito a esplosioni di minore entità